首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   5篇
测绘学   2篇
大气科学   12篇
地球物理   30篇
地质学   42篇
海洋学   26篇
天文学   33篇
自然地理   22篇
  2023年   2篇
  2022年   2篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2014年   6篇
  2013年   6篇
  2012年   6篇
  2011年   5篇
  2010年   11篇
  2009年   5篇
  2008年   5篇
  2007年   12篇
  2006年   8篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1975年   6篇
  1973年   2篇
  1971年   1篇
  1964年   1篇
  1936年   1篇
排序方式: 共有167条查询结果,搜索用时 156 毫秒
91.
A considerable portion of Northern Eurasia, and particularly its continental shelf, was glaciated by inland ice during late Weichsel time. This was first inferred from such evidence as glacial striae, submarine troughs, sea-bed diamictons, boulder trains on adjacent land, and patterns of glacioisostatic crustal movements. Subsequently, the inference was confirmed by data on the occurrence and geographic position of late Weichselian end moraines and proglacial lacustrine deposits.The south-facing outer moraines in the northeastern Russian Plain, northern West Siberia, and on Taimyr Peninsula are underlain by sediments containing wood and peat, the radiocarbon dating of which yielded ages of 22,000 to 45,000 yr B.P. The youngest late-glacial moraines are of Holocene age: the double Markhida moraine in the lower Pechora River basin, presumably associated with “degradational” surges of the Barents Ice Dome, is underlain by sediments with wood and peat dated at 9000 to 9900 yr B.P.: this suggests that deglaciation of the Arctic continental shelf of Eurasia was not completed until after 9000 yr B.P.The reconstructed ice-front lines lead to the conclusion that the late Weichselian ice sheet of Northern Eurasia (proposed name: the Eurasian Ice Sheet) extended without interruptions from southwestern Ireland to the northeastern end of Taimyr Peninsula, a distance of 6000 km: it covered an area of 8,370,000 km2, half of which lay on the present-day continental shelves and a quarter on lowlands that were depressed isostatically below sea level. Hence, the ice sheet was predominantly marine-based.A contour map of the ice sheet based both on the dependence of the heights of ice domes upon their radii and on factual data concerning the impact of bedrock topography upon ice relief has been constructed. The major features of the ice sheet were the British, Scandinavian, Barents, and Kara Ice Domes that had altitudes of 1.9 to 3.3 km and were separated from one another by ice saddles about 1.5 km high. At the late Weichselian glacial maximum, all the main ice-dispersion centers were on continental shelves and coastal lowlands, whereas mountain centers, such as the Polar Urals and Byrranga Range, played only a local role.The portions of the ice sheet that were grounded on continental shelves some 700 to 900 m below sea level were inherently unstable and could exist only in conjunction with confined and pinned floating ice shelves that covered the Arctic Ocean and the Greenland and Norwegian Seas.The Eurasian Ice Sheet impounded the Severnaya Dvina, Mezen, Pechora, Ob, Irtysh, and Yneisei Rivers, and caused the formation of ice-dammed lakes on the northern Russian Plain and in West Siberia. Until about 13,500 yr B.P. the proglacial system of lakes and spillways had a radial pattern; it included large West Siberian lakes, the Caspian and Black Seas, and ended in the Mediterranian Sea. Later, the system became marginal and discharged proglacial water mainly into the Norwegian Sea.  相似文献   
92.
Pleistocene glaciation in the southern Lake District of Chile   总被引:1,自引:0,他引:1  
Relative-age criteria permit deposits of successive Andean glacier advances in the southern Lake District of Chile to be divided into four mappable drift sheets, the oldest two of which overlie Tertiary bedrock along the eastern flank of the Cordillera de la Costa. Only the youngest drift (Llanquihue) is datable by radiocarbon. During the most extensive ice advance of the last glaciation the Lago Llanquihue glacier was about 95 km long and reached an estimated maximum thickness of between 1000 and 1300 m. Glacier equilibrium lines at that time lay about 1000 m below their present level and rose eastward with a gradient of about 5 m/km. Successive ice advances in the Lago Llanquihue basin, which resulted in construction of end moraines and associated outwash plains beyond the lake margin, culminated sometime before about 20,000 yr ago and between 20,000 and 19,000 yr ago. A later readvance, inferred from the sedimentary record of lake-level fluctuations in the basin, had begun by about 15,000 yr ago and culminated shortly after 13,000 yr ago. A comparable, but less-closely dated, record of ice advances is found northwest of Seno Reloncaví and on Isla Chiloé. Deglaciation following the latest advance is likely to have been rapid, for the major glacier lobes fronted on deep water bodies that would have promoted extensive calving.  相似文献   
93.
During the Itkillik Glaciation the Brooks Range supported an extensive mountain-glacier complex that extended for 750 km between 141° and 158°W longitude. Individual ice streams and piedmont lobes flowed as much as 50 km beyond the north and south margins of the range. Glaciers in the southern Brooks Range were longer than those farther north because of a southerly precipitation source, whereas those in the central and eastern part of the range were larger than glaciers at the extremities of the mountain system because of higher and more-extensive accumulation areas. Glacier equilibrium-line altitudes (ELAs) at the time of greatest advance were depressed 600 ± 100 m below present levels, whereas during a less-extensive late-glacial readvance (Alapah Mountain) ELA depression was about 300 ± 30 m. Radiocarbon dates indicate that Itkillik drift correlates with Late Wisconsin drift along the southern margin of the Laurentide Ice Sheet and with drift of Cordilleran glaciers in southern Alaska and the western conterminous United States deposited during the last glaciation. Itkillik I moraines represent the maximum ice advance under cold full-glacial conditions between about 24,000 and 17,000 14C y. a. Itkillik II sediments, probably deposited close to 14,000 y. a., are characterized by abundant outwash and ice-contact stratified drift implying a milder climate than that of the Itkillik I phase. Alapah Mountain moraines at the heads of valleys draining high-altitude (≥1800 m) source areas record a possible late Itkillik readvance that is not yet closely dated. Itkillik glaciers may have largely disappeared from Brooks Range valleys by the beginning of the Holocene.  相似文献   
94.
Equilibrium-line altitudes (ELA's) of former glaciers in the Tasman River-Lake Pukaki drainage basin of the Southern Alps were reconstructed from glacial-geologic data on former ice limits by using an assumed accumulation-area ratio of 0.6 ± 0.05. Late Holocene (Neoglacial) ELA's were depressed 140 m below present levels, whereas those of four late Pleistocene ice advances were depressed 500 m (Birch Hill), 750 m (Tekapo), 875 m (Mt. John), and 1050 m (Balmoral). Reconstructed ELA gradients are approximately parallel to one another and range from 19 to 23 m km?1. Although vertical movement on active faults and isostatic tilting due to deglaciation have both contributed to modification of reconstructed ELA gradients from their original values, the maximum resulting effect probably amounts to less than 2.0 m km?1 and is undetectable from present data.  相似文献   
95.
Dispersion Modelling of the Kilauea Plume   总被引:1,自引:0,他引:1  
Emissions from the Kilauea volcano pose significant environmental and health risksto the Hawaiian community. This paper describes progress toward simulating theconcentration and dispersion of plumes of volcanic aerosol after they emanate from thePu'u O'o vent of the Kilauea volcano.In order to produce an accurate regional forecast of the concentration and dispersionof volcanic aerosol, the Hybrid Single-Particle Lagrangian Integrated Trajectory(HY-SPLIT) model was used. Wind fields and thermodynamic data from the non-hydrostatic Mesoscale Spectral Model (MSM) were employed as input for theHY-SPLIT model. A combination of satellite remote sensing, aircraft, and ground-based observations collected during a field experiment was used to validate the model simulation of aerosol distribution.The HY-SPLIT model shows skill in reproducing the plume shape, orientation, and concentration gradients as deduced from satellite images of aerosol optical depth.Comparison of the modelled and observed values suggests that the model was able to produce reasonable plume concentrations and spatial gradients downwind of the source. Model concentrations were generally less than those observed on the leeward side of the Island of Hawaii. This deficiency may be explained by a lack of (i) background concentrations, (ii) local sources of pollution and/or (iii) sea-breeze circulation in the prognostic input wind field. These results represent early progress toward the goal of future operational application of the HY-SPLIT model to predict volcanic aerosol concentrations in Hawaii. This may help mitigate their negative impacts of plumes respiratory health, agriculture, and general aviation.  相似文献   
96.
In situ AGAGE GC-MS measurements of methyl bromide (CH3Br) and methyl chloride (CH3Cl) at Mace Head, Ireland and Cape Grim, Tasmania (1998–2001) reveal a complex pattern of sources. At Mace Head both gases have well-defined seasonal cycles with similar average annual decreases of 3.0% yr−1 (CH3Br) and 2.6% yr−1 (CH3Cl), and mean northern hemisphere baseline mole fractions of 10.37 ± 0.05 ppt and 535.7 ± 2.2 ppt, respectively. We have used a Lagrangian dispersion model and local meteorological data to segregate the Mace Head observations into different source regions, and interpret the results in terms of the known sources and sinks of these two key halocarbons. At Cape Grim CH3Br and CH3Cl also show annual decreases in their baseline mixing ratios of 2.5% yr−1 and 1.5% yr−1, respectively. Mean baseline mole fractions were 7.94 ± 0.03 ppt (CH3Br) and 541.3 ± 1.1 ppt (CH3Cl). Although CH3Cl has astrong seasonal cycle there is no well-defined seasonal cycle in the Cape Grim CH3Br record. The fact that both gases are steadily decreasing in the atmosphere at both locations implies that a change has occurred which is affecting a common, major source of both gases (possibly biomass burning) and/or their major sink process (destruction by hydroxyl radical).  相似文献   
97.
Loess and dune sands that mantle volcanic rocks on the northwest flank of Mauna Kea volcano consist predominantly of fine-grained pyroclasts of the alkalic Laupahoehoe Volcanics produced by explosive eruptions. The loess is divided into lower and upper units, separated by a well-developed paleosol, while older and younger dune sands are separated by loess. Four interstratified tephra marker horizons aid in regional stratigraphic correlation. Radiocarbon ages of charcoal fragments within the loess, U-series ages of rhizoliths in the dune sand, and K/Ar ages and relative stratigraphic positions of lava flows provide a stratigraphic and temporal framework. The lower loess overlies lava flows less than 103,000 ± 10,000 K/Ar yr old, and14C dates from the paleosol developed at its top average ca. 48,000 yr. Loess separating the dune sand units ranges from ca. 38,000 to 25,00014C yr old; the youngest ages from the upper loess are 17,000–18,00014C yr B.P. Dips of sand-dune foreset strata, isopachs on the upper loess, and reconstructed isopachs representing cumulative thickness of tephra associated with late-Pleistocene pyroclastic eruptions suggest that vents upslope (upwind) from the sand dunes were the primary source of the eolian sediments. Average paleowind directions during the eruptive interval (ca. 50,000–15,000 yr B.P.), inferred from cinder-cone asymmetry, distribution of tephra units, orientation of dune foreset strata, and the regional pattern of loess isopachs, suggest that Mauna Kea has remained within the trade-wind belt since before the last glaciation.  相似文献   
98.
孙东怀  周杰 《中国沙漠》1995,15(4):339-344
通过黄土高原及其临区104个地点地表土壤磁化率值与当地的现代多年平均降水量的回归分析,建立了磁化率与降水量的转换函数。在遍布黄土高原不同地区典型的全新世黄土-古土壤剖面磁化率测量的基础上,利用所建立的转换函数,初步恢复了全新世气候适宜期,黄土高原及黄土/沙漠过渡区年降水量的分布状况。  相似文献   
99.
100.
The Boston Harbor, Massachusetts Bay and Cape Cod Bay system (MBS) is a semi-enclosed coastal embayment located in the western Gulf of Maine (GOM). The strength of the spring bloom in the MBS varies dramatically and the underlying mechanisms are not well understood. It has been hypothesized that the weak (or missing) 1998 spring bloom was due to increased zooplankton grazing pressure after a relatively warmer winter that led to earlier development of zooplankton populations. However, chlorophyll concentrations were low in the entire GOM region during the spring bloom period of 1998. These low chlorophyll waters would enter the MBS by persistent intrusion from the GOM and affect the MBS spring bloom by reducing the accumulation of phytoplankton biomass, suggesting an alternative explanation for the missing bloom. In this study, the influences of the intruding GOM waters on the MBS spring bloom are examined using numerical simulations and observations to compare two contrasting spring blooms (a weak bloom in 1998 versus a strong bloom in 2000). The results indicate that intruding waters from the GOM significantly reduced the strength of spring bloom in 1998, but enhanced the spring bloom in 2000. A theoretical analysis suggests that the influence of the intrusion on the MBS spring bloom is mostly limited to the northern portion of the MBS, and the impact area is determined by local net growth, velocity of intruding flow and horizontal mixing. The intrusion of GOM waters carries the signal of long-term variability in the GOM region and thus may be an important oceanic pathway for climate changes to impact the MBS ecosystem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号